Primer on Quantum Mechanics

E.E. Ford Summer Teachers' Colloquium Joe Ginocchio & Mark Paris Los Alamos National Lab Theory Division T-2 Nuclear & Particle, Astrophysics & Cosmology

Why Quantum Mechanics?

Blackbody Radiation

- The energy density of radiation measured from a "black" cavity does not agree with theoretical expectations. Max Planck proposed that light has energy inversely proportional to its wavelength or directly proportional to its frequency (1900).
- Summing over all possible discrete standing waves in the cavity, he derived a simple equation energy density of light versus its wavelength for a given temperature.
- As the temperature increases his result approaches that of the classical result.
- Hence light beams of a given wavelength carry quanta of energy which we call photons.

$$E=h
u=rac{hc}{\lambda}$$
 h Planck's constant

Consequence of Planck's Quanta of Light

Photoelectric Effect

- This gave Einstein the idea that if you shine light on materials electrons will be emitted with energy determined by the frequency of the light, not by its intensity (1905).
- The intensity of the light (number of photons) determines the number of electrons emitted.
- Below a certain threshold of energy no electrons will be emitted which implies that the electrons are quantized in energy also.

- This leads to quantization of energy in atoms and nuclei.
- The quantization of energy in atoms depends on how electrons interact with each other. This is well understood.
- The quantization of energy in nuclei depends on how quarks interact with each other.
 This is not well understood.

Uncertainty Principle

Quantum Measurement

- In the process of measuring a particle the observer disturbs the particle.
- This uncertainty is expressed as (1928)

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

which relates uncertainty in position with uncertainty in momentum.

• The effects are very small because Planck's constant is small. For example an uncertainty of one mile per hour in the speed of your car leads to about 10^(-39) inches uncertainty in its position.

Interlude: quantum mechanics (QM) is very "real"

Visual proof

- Superfluid liquid Helium-4
 - Kapitsa, Allen, & Misener 1937
- Cooled below the "lambda point", T_λ=2.172 K
- The fluid flows up (against gravity) the inner wall of the vessel and down the outer wall
- Why? →Superfluid component has zero viscosity
- Capillarity drives flow; no resistance
- Lower image shows "inverse" process
- Superfluid is a consequence of a quantum description of nature
 - It's quite "real."
 - And macroscopic!

http://alfredleitner.com/superfluid.html

Back to the Heisenberg uncertainty principle (HUP)

Precision in position (x) & momentum (p=mv) is correlated

- x & p are examples of conjugate variables; all conjugate variables have this prop.
- Call $\Delta x \& \Delta p$ precisions; HUP says they're correlated:

$$\Delta x \cdot \Delta p \ge \hbar$$

- \hbar is Planck's constant a *nearly infinitesimal* number (6.626 × 10⁻³⁴ J s)
- Example: suppose we know an electron's position to 1 Fermi = 10⁻¹⁵ m

$$p = mv$$

$$\Rightarrow \Delta p = m\Delta v$$

$$\text{HUP} \Rightarrow \Delta v \ge \frac{\hbar}{m\Delta x} \approx 390 \frac{m}{s}$$

- An uncertainty of 390 m/s in the velocity is the best we can do.
- And this is non-classical:
 - Classically, measurements of one variable can always be done without affecting any other

Classical double-slit experiment

■ Waves of light or water or sound or ...

Kirchoff diffraction pattern

Another "real," nearly classical example

■ Wave-particle duality of C₆₀ molecules

- Zeilinger et.al., Nature 401 (1999)
- Classic double-slit type experiment except it uses fullerenes ("buckyballs") rather than light
- Fullerenes are "nearly classical": C_{60} size ~ 400 x (de Broglie wavelength)
- de Broglie wave interference pattern is seen
- Compared to standard Kirchoff diffraction pattern
- Is it a "wave" or is it a "particle"?

- Standard double-slit but with electrons
- Let electrons pass through slits one at a time
- Take four time-lapsed photographs
- Interference pattern builds-up over time!

- Classical waves → lots of particles
- Quantum waves → single particle

- Standard double-slit but with electrons
- Let electrons pass through slits one at a time
- Take four time-lapsed photographs
- Interference pattern builds-up over time!

- Classical waves → lots of particles
- Quantum waves → single particle

- Standard double-slit but with electrons
- Let electrons pass through slits one at a time
- Take four time-lapsed photographs
- Interference pattern builds-up over time!

- Classical waves → lots of particles
- Quantum waves → single particle

- Standard double-slit but with electrons
- Let electrons pass through slits one at a time
- Take four time-lapsed photographs
- Interference pattern builds-up over time!

- Classical waves → lots of particles
- Quantum waves → single particle

UNCLASSIFIED

- Standard double-slit but with electrons
- Let electrons pass through slits one at a time
- Take four time-lapsed photographs
- Interference pattern builds-up over time!

- Classical waves → lots of particles
- Quantum waves → single particle

UNCLASSIFIED

Slide 13

On the wave-particle duality and consistency

The usual story

- "Sometime it acts as a particle, sometimes it acts as a wave"
- The oft-neglected point: these "sometimes" never coincide!
- Ref: Tipler, Physics for Scientists & Engineers

Wavelike

 During propagation (ie. going from A to B without interacting with anything along the way)

Pointlike

During interaction (ie. when the electron exchanges energy/momentum)

There are rules!

 Full description of processes requires both but not at the same time.

QM & causality: spin

Spin (intrinsic spin)

- An electron has intrinsic spin of ½ħ; you might imagine it as spinning*
- · Spin (angular momentum) in QM is weird

*but this isn't quite right

- If you measure spin in one direction, then you affect the spin value in the other two directions
- Another weird thing
 - Measurement of spin, along any direction gives only two values: $\pm \frac{1}{2}\hbar$
- And yet, even more weird:
 - Spin can be in a **superposition** of $\pm \frac{1}{2}\hbar$ and $\pm \frac{1}{2}\hbar$
 - Wave function $|\psi\rangle = \alpha |+\hat{\mathbf{z}}\rangle + \beta |-\hat{\mathbf{z}}\rangle$
 - These superpositions have definite spin in some other direction but the spin measured in the z-direction is random, weighted by

$$|\alpha|^2 \Rightarrow \text{spin in } + \hat{\mathbf{z}} \text{ direction OR } |\beta|^2 \Rightarrow \text{spin in } -\hat{\mathbf{z}} \text{ direction}$$

Learn more about spin and QM: http://public.lanl.gov/mparis/qmp.pdf

QM & causality:

Entanglement

- A spin-zero particle decays into two spin-½ particles
- If left-side particle (LSP) is measured along a chosen direction as +½, then right-side particle (RSP) is measured as -½ along this same chosen direction (because angular momentum conserved)
- In this state of affairs the spins are "entangled"; that is, they're correlated
- Since the state of the LSP is, in general, a superposition of +½ & -½, it's spin is *unknown* until measured
- Then the state of the RSP is fixed (along the chosen direction) seemingly instantaneously ?!
 - And this is weird.
 - Or, at least, appears to conflict with special relativity (Einstein)
 - But it doesn't conflict: there's no way to transfer information using these entangled states

Einstein, Podolsky, & Rosen were upset by this state of affairs. They were right to be upset. But QM has proven itself.

UNCLASSIFIED

Slide 16

Usefulness of Quantum Mechanics

Modern Technology

- Solar panels depend on the photoelectric effect to convert sunlight to electrical energy.
- Quantum physics determine the special properties of semi-conductors and superconductors which have spawned the electronics that we depend on daily.

Future

- Classical computer use bits, on or off, or zero and one. Quantum computers use
 qubits which are a combination of zero and one. For example a qubit can be linear
 combination of spin up and spin down. Qubits allow parallel computing with one
 processor.
- Quantum Cryptography

Conclusion

 An abstract physics theory understood by only a few people 100 years ago has led to a new world of technology. Even so, to this day quantum physics is not fully understood. For, example we do not have a complete understanding of quantum gravity.

